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Abstract The dynamic form of the Michaelis–Menten enzymatic reaction equations
provide a time-dependent model in which a substrate S reacts with an enzyme E to
form a complex C which in turn is converted into a product P and the enzyme E . In the
present paper, we show that this system of four nonlinear equations can be reduced to
a single nonlinear differential equation, which is simpler to solve numerically than the
system of four equations. Applying the Lyapunov stability theory, we prove that the
non-zero equilibrium for this equation is globally asymptotically stable, and hence that
the non-zero steady-state solution for the full Michaelis–Menten enzymatic reaction
model is globally asymptotically stable for all values of the model parameters. As such,
the steady-state solutions considered in the literature are stable. We finally discuss
properties of the numerical solutions to the dynamic Michaelis–Menten enzymatic
reaction model, and show that at small and large time scales the solutions may be
approximated analytically.

Keywords Dynamic Michaelis–Menten model · Nonlinear dynamics · Stability ·
Enzyme reactions

1 Introduction

The Michaelis–Menten model [1] is extensively used in the theoretical study of enzyme
kinetic reactions. In this model, a substrate S reacts with an enzyme E to form a
complex C which in turn is converted into a product P and the enzyme E ; the schematic
is E + S � C → E + P . From the law of mass action, the dynamic form of the
Michaelis–Menten enzymatic reaction model [1] reads
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d S

dt
= −k1 E S + k−1C,

d E

dt
= −k1 E S + (k−1 + k2)C,

dC

dt
= k1 E S − (k−1 + k2)C,

d P

dt
= k2C, (1.1)

where S(t) is the concentration of a substrate, E(t) is the concentration of an enzyme,
C(t) is the concentration of the resulting complex, and P(t) is the concentration of
the resulting product. Here, k1 > 0 is the rate of reaction governing the production
of the complex from the substrate and the enzyme, k−1 > 0 is the rate of reaction
governing decomposition of the complex to the substrate and enzyme, and k2 > 0 is
the rate of reaction governing the breakdown of the complex into the product and the
enzyme. It is reasonable to consider initial conditions of the form S(0) = S0, E(0) =
E0, C(0) = 0 and P(0) = 0. Here we may normalize the parameters (the k’s) and
the time variable so that the concentrations themselves are normalized. In this way,
the system (1.1) is non-dimensional.

A common method that is often used to deal with the Michaelis–Menten nonlinear
system is to consider the quasi-steady state assumption [2–5]. Golicnik [6] presented
some solutions to a Michaelis–Menten model in terms of the Lambert W(x) function,
and also considered the time-dependent problem [7]. Abu-Reesh [8] derived analyt-
ical equations for the optimal design of a number of membrane reactors in series
performing enzyme catalyzed reactions described by Michaelis–Menten kinetics with
competitive product inhibition. Most of the solutions in the literature for (1.1) are either
static or quasi-static, or exist for various reductions of (1.1). Previously, the homotopy
perturbation method has been applied to the study of enzyme reaction models [9,10].
In this method, perturbation is done with respect to an auxiliary parameter. However,
such solutions may or may not converge (see, for instance [11,12], for examples of
when the homotopy perturbation method does not converge). Some limitations were
discussed in [10], and it was shown that the homotopy perturbation method solutions
are good for some parameter regimes, and poor for others. On the other hand, the
homotopy analysis method often can be made to converge, since it includes a type of
convergence control parameter. Recently, Motsa, Shateyi, and Khan [13] considered
this approach, and obtained homotopy analysis solutions which converge for the para-
meter regimes considered. Either way, these methods are often cumbersome, despite
their usefulness when other approaches fail, and can be treated as a sort of mixed
analytical-numerical routine. It is clearly desirable to have an efficient way of obtain-
ing solutions to such nonlinear reaction models, particularly for more complicated
models in which the dimension of the system is increased.

Often times in modeling physical problems, one can exploit certain symmetries or
other properties of the problem, in order to reduce the dimension of the problem being
solved. In the present paper, we start with the four-dimensional mathematical model
(1.1). Through several manipulations, we are able to obtain a single equation which
holds all of the relevant information needed to recover the solution to (1.1). We should
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remark that this particular form of the Michaelis–Menten enzymatic reaction model
(1.1) has not previously been considered in the literature. We use this reduced form
of the model to prove that the non-zero steady-state of the Michaelis–Menten model
is globally asymptotically stable. One may use this reduction to obtain numerical
solutions to the Michaelis–Menten model.

2 Reduction of the system (1.1) into a single equation

We shall begin by reducing the four-dimensional system (1.1) into a single equation,
as this will aid in the solution process. Combining the E and C differential equations,
we see that

d

dt
(E + C) = 0 so that C(t) = E0 − E(t). (2.1)

Subtracting the E equation from the S equation gives

d

dt
(S − E) = −k2C = −k2(E0 − E(t)), (2.2)

and integrating, we find that

S(t) = S0 + E(t) − E0 + k2

t∫

0

(E(τ ) − E0)dτ. (2.3)

Finally, using (2.1) in the P differential equation, we obtain

P(t) = k2

t∫

0

(E0 − E(τ ))dτ. (2.4)

With this, we have the functions C(t), S(t), and P(t) uniquely determined in terms
of E(t). So, it will suffice to solve for E(t). Placing (2.1) and (2.3) into the original
E differential equation, we have

d E

dt
= (k1 E + k−1 + k2)(E0 − E(t)) − k1S0 E(t) + k1k2 E(t)

t∫

0

(E0 − E(τ ))dτ.

(2.5)

If we manipulate (2.5) through differentiation to remove the integration (thereby
removing non-locality from the equation) and define a new function F and time vari-
able T by the transformations

E(t) = k2

k1
F(T ) where T = k2t, (2.6)
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we obtain the nonlinear differential equation

F F ′′ + F2 F ′ + μ1 F ′ − F ′2 − μ2 F2 + F3 = 0, (2.7)

where prime denotes differentiation with respect to T , and the constants μ1 and μ2
are given by

μ1 = k2
1 E0

k2
2

Km > 0 and μ2 = k1 E0

k2
> 0, (2.8)

where μ1 represents a scaling of the Michaelis constant [14], Km = k−1+k2
k1

. Note also
that

μ1 = μ2
2

E0
Km . (2.9)

The initial condition

F(0) = k1 E0

k2
= μ2 > 0 (2.10)

is clear from the transformation (2.6), while from (2.5) it follows that

d E

dt
(0) = −k1S0 E0 and thus F ′(0) = −k2

1 S0 E0

k2
2

= − S0

E0
μ2

2 < 0. (2.11)

In order to condense (2.7), we shall make another transformation. Let f (T ) =
ln F(T ) and note that f (T ) is well-defined, since E(t) > 0 and hence F(T ) > 0.
From Eq. (2.7), we obtain

f ′′ +
(

e f + μ1e− f
)

f ′ + e f = μ2, (2.12)

where, again, prime denotes differentiation with respect to T . Initial conditions are
then found to be given by f (0) = ln μ2 and f ′(0) = F ′(0)

F(0)
= − S0

E0
μ2. We shall now

be concerned with the solution to this initial value problem. Once such a solution is
found, it is clear that we may invert the relevant transformations to obtain

E(t) = k2

k1
e f (T ) = k2

k1
exp( f (k2t)). (2.13)

The other quantities of interest may then be recovered by the formulas

C(t) = E0 − k2

k1
exp( f (k2t)), (2.14)
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S(t) = S0 + k2

k1
exp( f (k2t)) − E0 +

k2t∫

0

(
k2

k1
exp( f (τ )) − E0

)
dτ, (2.15)

P(t) =
k2t∫

0

(
E0 − k2

k1
exp( f (τ ))

)
dτ. (2.16)

Thus, knowledge of the solution f to the second order differential equation (2.12) gives
us complete knowledge of the solution to the four-dimensional Michaelis–Menten
system (1.1).

3 Asymptotic stability of the solutions

We may apply Lyapunov stability theory [15] in order to demonstrate that the non-zero
equilibrium for the Michaelis–Menten system (1.1) is globally asymptotically stable.
Let us first write (2.12) in system form. Defining y1 = f and y2 = f ′, we see that

y′
1 = y2,

y′
2 = μ2 − exp(y1) − (exp(y1) + μ1 exp(−y1))y2. (3.1)

Now, consider the candidate Lyapunov function

V (y1, y2) = 1

2
y2

2 + G(y1), (3.2)

where G(y1) = μ2(ln μ2−1)−μ2 y1+exp(y1). We claim that V is a global Lyapunov
function, and that the equilibrium (y1, y2) = (ln μ2, 0) is globally asymptotically
stable. We must verify three things: (i) d

dt V < 0 for all (y1, y2) �= (ln μ2, 0), (ii)
V = 0 for (y1, y2) = (ln μ2, 0) while V > 0 for (y1, y2) �= (ln μ2, 0), and (iii) V
radially unbounded.

First, observe that

dV

dt
= ∂V

∂y1
y′

1 + ∂V

∂y2
y′

2

= −(μ2 − exp(y1))y2 + y2(μ2 − exp(y1)) − y2
2 (exp(y1) + μ1 exp(−y1))

= −y2
2 (exp(y1) + μ1 exp(−y1))

≤ −2
√

μ1 y2
2 , (3.3)

hence d
dt V < 0 for all (y1, y2) �= (ln μ2, 0). Second, by verification we have that

V (ln μ2, 0) = 0. On the other hand, note that G ′(y1) < 0 for y1 < ln μ2 yet G ′(y1) >

0 for y1 > ln μ2, so G(y1) > 0 for all y1 �= ln μ2. Clearly, V > 0 for all (y1, y2) �=
(ln μ2, 0). Finally, G(y1) is radially unbounded (again, because G ′(y1) < 0 for y1 <

ln μ2 yet G ′(y1) > 0 for y1 > ln μ2), and of course so is y2
2 . Therefore, V is radially

unbounded.

123



J Math Chem (2014) 52:222–230 227

With this, we have shown that the candidate function V is globally positive
definite, radially unbounded, and the time-derivative of the candidate function is
globally negative definite. Therefore, the equilibrium (y1, y2) = (ln μ2, 0) is glob-
ally asymptotically stable. Since Eq. (2.12) was just a transformation of (1.1),
it follows that the non-zero equilibrium of (1.1) is globally asymptotically sta-
ble. This is in contrast to other models, which may exhibit chaotic behaviors
[16].

4 Numerical simulation of the solution f

Since a solution f for (2.12) approaches a globally asymptotically stable equilibrium
f ∗ = ln μ2 for μ1 > 0, we should expect any numerical simulations to satisfy this
large-time behavior. While a variety of numerical methods could be applied, we use
the Runge–Kutta–Fehlberg 4–5 method [17], since it is standard in many mathematics
programs (Maple, MatLab, Mathematica). In Fig. 1, we provide numerical solutions
to (2.12) for various values of the physical parameters. Indeed, the required behaviors
discussed above are apparent in these solutions. One can then use the relations (2.13)–
(2.16) to recover the numerical solutions of the system of interest (1.1). From these
solutions, some observations are in order.

First, note that the numerical solution profiles can be approximated by an expression
of the form

Fig. 1 Plot of the solutions f to (2.12) for various values of μ1 and μ2. We fix the ratio S0/E0 = 1.
All solution profiles dip and then return to their initial values. As f is a transformation of the enzyme
concentration, it is a measure of enzyme availability: during the reaction, the enzymes are used, while after
the reaction they become free
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Fig. 2 Plot of the solutions to
the dynamic Michaelis–Menten
enzymatic reaction model (1.1).
We fix the parameter values
k−1 = k1 = k2 = 1 and
E0 = S0 = 1, yielding Km = 2
and μ1 = 2, μ2 = 1. Similar
plots may be obtained for other
parameter values

f̂ (T ) = ln F̂(T ), F̂(T ) = μ2 + S0μ
2
2

(α − β)E0
(exp(−αT ) − exp(−βT )) , (4.1)

where α > β > 0. It can be verified that f̂ (0) = ln μ2 and limT →∞ f̂ (T ) = ln μ2
as required, while the needed condition on f̂ ′(0) also holds. Here, α is a measure
of the initial usage rate of the enzyme, while β is a measure of the recovery rate of
the enzyme. Since α > β, the solution first decays and then recovers. A variational
method or regression approach can be considered for the calculation of α and β; the
complete discussion of this point is beyond the scope of this paper.

Secondly, note that there is a time T ∗ > 0 at which enough of the enzyme is
used to create the compound and the compound begins to decay into the product and
enzyme, so that the quantity of enzyme begins to increase. This time corresponds to
the minima of the graphs in Fig. 1. For the approximate solution form (4.1), note that
this corresponds to F ′(T ∗) = 0, hence we find that T ∗ = (α − β)−1 ln(α/β).

In order to see how numerical solutions of f translate into solutions to the physical
system (1.1), we plot solution profiles in Fig. 2. While we fix the model parameters
in order to generate plots, this can be done for any choice of model parameters.

Let’s see how our approximating expression may be used. Since there is no exact
solution to (1.1), in order to determine the error of such an approximation, we need to
consider residual errors. Define

J [F] =
∞∫

0

{
F F ′′ + F2 F ′ + μ1 F ′ − F ′2 − μ2 F2 + F3

}2
dT, (4.2)
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Fig. 3 Plot of the numerical and approximate solutions (using the approximate solution (4.1)) to F obtained
by solving (2.7). We fix the parameter values k−1 = k1 = k2 = 1 and E0 = S0 = 1, yielding Km = 2
and μ1 = 2, μ2 = 1. Similar plots may be obtained for other parameter values. In order to obtain the
approximate solution, we minimized the functional J [F̂] with respect to parameters α and β, finding
α = 1.4 and β = 1.3 to give J [F̂] = 0.0126252. This is the optimal approximation of the form (4.1).
Note that the approximation is very good for both small and large values of the scaled time variable, T ,
so the approximation can accurately model small and asymptotic dynamics of the Michaelis–Menten system.
For intermediate values, the two exponential functions cannot model the dynamics of the additional turn in
the graph which occurs at about T = 4. Once could assume a more complicated approximation, involving
an additional exponential, to more accurately model this regime. Note that this peak does not occur for all
parameter values, in which case the analytical solution is more accurate. The minimal value of F occurs at
T ∗ = (α − β)−1 ln(α/β) = 0.741

which is the integral of the squared residual error over the domain. In order to determine
the parameters α and β, we minimize this functional with respect to these parameters.
In Fig. 3 we demonstrate the utility of this approach. We find that the analytical
assumption (4.1) is useful for large and small time scales. For intermediate time scales,
this approximation may break down. In such a case, a more complicated form of the
approximate solution, involving more than two exponential terms, can be employed
to yield more accurate results in this intermediate time regime.

5 Conclusions

In summary, we have reduced the dynamic Michaelis–Menten system (1.1) into a
single time-dependent differential equation, which is easier to solve numerically than
the original system. This sheds light on the features of the model which influence the
solution process. We have used this equation to prove that solutions to the Michaelis–
Menten system tend toward globally asymptotically stable equilibria as time gets
large. Numerical solutions agree with what we qualitatively expect from the model.
With this, we have completely determined the types of behaviors emergent from the
dynamic Michaelis–Menten system.

123



230 J Math Chem (2014) 52:222–230

Note that we have effectively reduced the fourth-order dynamic Michaelis–Menten
system (1.1) into a dynamical system of second order. This reduction of phase space
casts some light on the physical processes at play. Indeed, the fact that we can perform
this reduction without loss of information implies that there are effectively two free
quantities in the dynamic Michaelis–Menten system (1.1), while the remaining two
quantities are completely controlled by the first two.

We have determined a method for obtaining an approximate solution, through a
variational approach. Balancing two exponential modes, we have been able to construct
an approximate solution that agrees with numerical simulations for small and large
time scales. For intermediate time scales, the solutions may lose accuracy. In this case,
a more complicated form of the approximate solution, using three or more exponential
modes, will improve accuracy of the approximate solutions.
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